September 2017 Puzzle

Place the letters A, B, and C in the $4 x 4$ grid below so that each of the following "words" can be found in a row (read left to right) or column (read top to bottom).

ACAA BACA BACC BBAB BBAC CBBA CBCA CBBC

September 2017 Solution

The two possible solutions to the puzzle are shown below.

C	B	B	A
B	B	A	C
B	A	C	A
C	B	C	A

C	B	B	C
B	B	A	B
B	A	C	C
A	C	A	A

As one can easily see, each of these solutions can be obtained from the other by simply interchanging each row with the corresponding column (change row 1 to column 1 , row 2 to column 2, etc...).

A strategic method for coming up with the solutions will now be provided.
We start by determining where the word $A C A A$ must go. Since we can easy convert a solution where $A C A A$ is in a row, to one where it is in a column (as described above), we will focus on a solution where $A C A A$ is in a column. This is the only word which has A as its first letter and therefore, it cannot be placed in column 1 for otherwise, column 1 and row 1 would both have words starting with A. Similarly, $A C A A$ is the only word that has C as its second letter, and therefore it cannot be placed in column 2. If $A C A A$ where in column 3, then there would be three rows containing words where A was the third letter. However,
that isn't possible since there are only three words with A as the third letter and $A C A A$ is one of them, which would have already been placed in column 3 . We conclude that $A C A A$ must be located in column 4.

Since no other words start with A, we see that no other A 's can be placed in column 1 or row 1.

We now look to determine which word must be placed in column 1. The only word that starts with B and ends with A, is $B A C A$ which can't be in row 1, since no other A 's can be placed in row 1 . Therefore, row 1 cannot begin with a B. The only word starting with C that doesn't contain the letter A is $C B B C$, and thus $C B B C$ must be in the first column.

We immediately determine that BACA must be in row 3 as it is the only word starting with B and ending with A.

Of the words remaining, only $B B A B$ and $B B A C$ have A as the third letter and therefore these are the only two words to consider for column 2. But if we put $B B A C$ in column 2, then row 4 would start with $C C$ and there are no words that start $C C$. Thus, we must have $B B A B$ in column 2.

At this point, all that remains is to complete column 3. The only words remaining with C as the third letter are $B A C C$ and $C B C A$. But if we put $C B C A$ in column 3, then $C B C A$ would also appear as row 1. Therefore, we conclude that column 3 must be BACC and the puzzle is complete.

C			A
B			C
B	A	C	A
C			A

C	B		A
B	B		C
B	A	C	A
C	B		A

C	B	B	A
B	B	A	C
B	A	C	A
C	B	C	A

